Inicio Blog Página 349

El Microscopio – Emisión 188

0

Miércoles 06 de Enero de 2016

  • Entrevista con el Dr. José Antonio López Martín (España), Presidente de GÉTICA (Grupo Español de Terapias Inmuno-Biológicas en Cáncer), nos informa sobre Inmunovigilancia del Sistema Inmune en el cáncer.
  • Historia de Leonardo da Vinci.
  • Libros de James O. Westgard en la Biblioteca Académica Virtual, donados por la Fundación Wallace H. Coulter.
  • Fundación Wallace H. Coulter.
  • Sección Reporte Epidemiológico.
  • Noticias, eventos y novedades relacionadas a la Bioquímica Clínica.


–> Descargar programa completo <–

Listado de emisiones anteriores

Historia de Leonardo da Vinci

0

Leonardo Da Vinci nació en 1452 en la villa toscana de Vinci, hijo natural de una campesina, Caterina (que se casó poco después con un artesano de la región), y de Ser Piero, un rico notario florentino que tuvo otros hijos ya entrado en años, por lo cual Leonardo fue criado como si fuese el único.

Leonardo es símbolo del hombre del Renacimiento, genio universal, además de filósofo y humanista, considerado como uno de los más grandes pintores de todos los tiempos y, probablemente, la persona con el mayor número de talentos en múltiples disciplinas que jamás ha existido.

Se completa la séptima fila de la tabla periódica con 4 nuevos elementos

0

La Unión Internacional de Química Pura y Aplicada ha confirmado el hallazgo y la inclusión de cuatro elementos nuevos a la tabla periódica. Los elementos 113, 114, 117 y 118 son sintéticos, altamente radiactivos y con una vida de segundos o milisegundos.

Los elementos 113, 115, 117 y 118, descubiertos en las últimas dos décadas por científicos rusos, japoneses y estadounidenses, completan la séptima fila de la tabla periódica. Tras haber sido confirmados por la Unión Internacional de Química Pura y Aplicada (IUPAC, por sus siglas en inglés), se abre ahora el plazo para que los equipos descubridores propongan un nombre y un símbolo para sus hallazgos.

“La comunidad científica está ansiosa de que su preciada tabla se complete hasta la séptima fila. La IUPAC ya ha iniciado el proceso para formalizar los nombres y símbolos”, indica Jan Reedjik, presidente de la división de química inorgánica de la organización.

Hasta que reciban su nombre oficial se les conocerá como ununtrium (Uut o elemento 113), unumpentium (Uup, 115), ununseptium (Uus, 117) y ununoctium (Uuo, 118).

Los nuevos elementos

En 2003 un equipo ruso-estadounidense ya mencionó la posible existencia del elemento 113. Sin embargo, no fue hasta 2012 cuando el equipo del científico Kosuke Morita, de la Universidad de Kyushu (Japón), pudo confirmar su existencia. Este nuevo elemento es el resultado de la desintegración del 115.

El elemento 115 existe durante menos de un segundo antes de desintegrarse en átomos más ligeros. Según la IUPAC, el trabajo colaborativo entre científicos del Instituto Central de Investigaciones Nucleares en Dubna (Rusia), el Laboratorio Nacional Lawrence Livermore en California (EE UU) y el Laboratorio Nacional Oak Ridge en Tennessee (EE UU), que comenzó en 2010 y cuyos hallazgos fueron confirmados en 2012 y 2013, cumple los criterios necesarios para atribuirles el descubrimiento de este elemento y también del 117.

El 117 es el segundo elemento sintético más pesado de la tabla, después del también recién incluido 118, y su vida es de escasos milisegundos.

Finalmente, el instituto ruso y el laboratorio californiano –también implicados en el descubrimiento de los elementos 115 y 117– son responsables del hallazgo del elemento 118, el de mayor masa atómica de todos los sintetizados hasta ahora.

“Estamos entusiasmados con estos nuevos elementos  y agradecemos a estos científicos su minucioso trabajo, así como la labor de la comisión de comprobación”,  afirma Mark Cesa, presidente de IUPAC.

Descubrimientos complicados

“Una de las principales dificultades en el establecimiento de estos nuevos elementos es que se desintegran en isótopos hasta ahora desconocidos de elementos algo más ligeros, que también deben ser inequívocamente identificados”,  explica Paul J. Karol, miembro del comité que ha revisado los descubrimientos.

“En el futuro esperamos mejorar métodos que puedan medir directamente el número atómico, Z “, concluye.

La comisión de comprobación de los nuevos elementos ha estado integrada por un equipo conjunto de la Unión Internacional de Química Pura y Aplicada (IUPAC) y de la Unión Internacional de Física Pura y Aplicada (IUPAP).

Fuente: Agencia Sinc

Hallan una posible nueva diana antitumoral

0

El oncogén MYC interviene en muchos tipos de cáncer, algunos de ellos muy agresivos. Investigadores del Centro Nacional de Investigaciones Oncológicas han logrado identificar una proteína indispensable para que MYC produzca cáncer en modelos de ratón y creen que podría ser una nueva diana para futuros fármacos antitumorales.

MYC es un oncogén especialmente complejo, que hasta ahora se ha resistido a la manipulación terapéutica. Investigadores del Centro Nacional de Investigaciones Oncológicas (CNIO) han conseguido ahora identificar una proteína indispensable para que MYC produzca cáncer en modelos de ratón. El equipo cree que podría ser una nueva diana para futuros fármacos antitumorales.

El trabajo, publicado hoy en Nature Communications, emplea técnicas de análisis masivos de datos para estudiar el comportamiento de MYC en redes formadas por centenares de genes.

Este oncogén es una de las principales proteínas que regulan la expresión génica en las células. La mayoría de este tipo de proteínas actúan sobre menos del 1% de los genes del genoma, pero MYC regula entre 2.000 y 3.000 genes, lo que supone hasta el 15% de los genes en todo el genoma. Así pues, MYC interviene en una plétora de funciones celulares: crecimiento celular, proliferación, diferenciación y apoptosis.

Como indica Paco Real, jefe del Grupo de Carcinogénesis Epitelial del CNIO, y uno de los autores del trabajo, “MYC es realmente un controlador general de la actividad de la célula; es uno de los pocos genes que, si lo eliminas, hace inviable a la célula”.

Se sabe que, cuando está desregulado, MYC promueve la formación de múltiples tipos de cáncer —páncreas, ovario, colon, linfomas, entre otros—. El gen MYC está alterado en más de la mitad de los cánceres humanos, y a menudo se lo asocia a tumores muy agresivos.

Por eso muchos grupos buscan hace tiempo una manera de actuar sobre MYC, con la idea de que inhibirlo constituya una nueva vía para combatir el cáncer. Sin embargo, la complejidad de su funcionamiento hacen de este oncogén un objetivo difícil.

El Grupo de Carcinogénesis Epitelial del CNIO recurrió a una estrategia de análisis masivo de datos. Trabajando con células cultivadas in vitro y con técnicas de bioinformática lograron identificar un gen, llamado BPTF, como posible gen importante en cáncer.

Acción biológica

Los investigadores también detectaron mutaciones en BPTF en cáncer de vejiga, y posteriormente demostraron que cuando se inactiva BPTF las células no pueden crecer. Eso sugirió una función relacionada con MYC.

Como explica Real, “vimos que cuando eliminábamos la función de BPTF resultaban afectados muchos genes que se sabe que dependen de MYC; ello nos hizo pensar que MYC necesita a BPTF para realizar su acción biológica”.

En efecto, en un modelo de ratón de cáncer de páncreas dependiente de MYC, el Grupo de Real, en colaboración con la Unidad de Citogenética Molecular del CNIO que dirige Juan Cruz Cigudosa, han demostrado que inhibir la acción de BPTF reduce la agresividad de los tumores.

BPTF emerge por tanto como un importante eslabón en la cadena de sucesos moleculares que permiten la acción de MYC. Dado que, según muestra este trabajo, bloqueando BPTF las células tumorales no proliferan o lo hacen mucho menos, los autores consideran que este gen podría ser una nueva diana para tratar numerosos tipos de cáncer.

“Proponemos que un abordaje valioso para tratar los tumores dependientes de MYC es usar pequeñas moléculas que interrumpan la interacción entre MYC y BPTF”, escriben Laia Richart, primera firmante del trabajo, y el resto de los autores en Nature Communications.

‘Pesca’ de datos

La estrategia seguida por los investigadores pasó por recopilar una enorme cantidad de datos, de los que solo unos pocos serán relevantes. El objetivo último de este tipo de abordaje es identificar, de entre los centenares de alteraciones moleculares que se producen cuando se desarrolla un tumor, aquellas que representan un talón de Aquiles para las células cancerosas.

“A veces no sabes si lo que has pescado es zapato o trucha”, dice Real. Dilucidarlo —hallar la información relevante entre una maraña de datos de compleja interpretación— exige herramientas de análisis masivo, “intuición basada en la experiencia” y llevar a cabo experimentos bien dirigidos. Se trata de una estrategia “absolutamente necesaria” en la investigación actual, aunque para los investigadores supone un auténtico reto: “Durante años no estuvimos seguros de la relevancia de BPTF en cáncer humano”.

Los resultados que ahora se publican en Nature Communications han exigido unos siete años de trabajo. El trabajo ha estado co-dirigido por Paco Real y Víctor J. Sánchez-Arévalo, que también forma parte del Grupo de Carcinogénesis Epitelial del CNIO.

Referencia bibliográfica

Laia Richart, Enrique Carrillo-de Santa Pau, Ana Río-Machín, Mónica P. de Andrés, Juan C. Cigudosa, Víctor J. Sánchez-Arévalo Lobo, Francisco X. Real. “BPTF is required for c-MYC transcriptional activity and in vivo tumorigenesis”. Nature Communications (2016). doi: 10.1038/ncomms10153

Fuente: Agencia Sinc

Comparación de siete pruebas diagnósticas para detectar infección por Trypanosoma cruzi en pacientes en fase crónica de la enfermedad de Chagas

0

La enfermedad de Chagas (EC) es causada por la infección con el parásito protozoario intracelular Trypanosoma cruzi. La Organización Mundial de  la Salud estima que aproximadamente 8 millones de personas en Latinoamérica están infectadas. Sin embargo, debido a la creciente migración de  latinoamericanos a múltiples países en todo el mundo, esta patología ahora debe ser considerada una enfermedad global.

En Colombia, la prevalencia de infección por T. cruzi es de alrededor del 5%, correspondiente a 700,000 personas, y, en algunas áreas del departamento de Santander, la seroprevalencia es de cerca del 50%. Las manifestaciones clínicas de la EC incluyen una fase aguda y una crónica, la cual se presenta con un amplio espectro de manifestaciones con formas cardíacas, digestivas y neurológicas. Sin embargo, sólo aproximadamente entre un 20-30% de los individuos infectados desarrolla la cardiomiopatía chagásica crónica y/o el megaesófago/megacolon.

El diagnóstico de infección con T. cruzi es complejo, especialmente durante la fase crónica, debido a la ausencia de síntomas y a la parasitemia baja o intermitente2 que hace que los métodos parasitológicos directos tengan  baja sensibilidad. Por esta razón, el diagnóstico se basa en métodos serológicos, los cuales detectan la presencia de anticuerpos específicos  dirigidos contra antígenos de T. cruzi combinados con hallazgos clínicos y epidemiológicos. Sin embargo, las pruebas serológicas presentan alta sensibilidad, pero poca especificidad por reacciones cruzadas con otros parásitos como Leishmania sp. y T. rangeli. En este escenario, la Organización Panamericana de Salud (OPS) sugirió que por lo menos dos ensayos basados en diferentes técnicas deberían ser usados en paralelo para aumentar la precisión diagnóstica porque un solo ensayo no es considerado lo suficientemente sensible y específico. Pero esta estrategia ha llevado a un aumento en el número de resultados inconclusos que dificultan el manejo clínico de estos casos. Además, el diagnóstico correcto no sólo es una prioridad para identificar a los individuos que deben recibir un tratamiento adecuado, sino, también, para reducir y prevenir el riesgo de transmisión a través de trasfusiones de sangre y/o trasplante de órganos.

Los métodos inmunológicos se basan en el ensayo inmunoenzimático (ELISA), ensayo de hemaglutinación indirecta (HAI), inmunofluorescencia  indirecta (IFI), ensayo de inmunotransferencia (IB) y ensayo inmunocromatográfico (IC). La mayoría de los ensayos usan como antígeno lisados  crudos del parásito; sin embargo, se ha descrito el uso de proteínas recombinantes y/o péptidos sintéticos para aumentar la especificidad de las  pruebas. A pesar de que los métodos inmunológicos se usan en el diagnóstico de la infección por T. cruzi, los métodos moleculares proporcionan una alternativa, especialmente en casos de serología dudosa. Estos métodos están basados, principalmente, en la amplificación por reacción en cadena de la polimerasa (PCR). Sin embargo, el ensayo de PCR anidada (PCR-A)10, el ensayo de PCR cuantitativa en tiempo real  (PCR-RTQ), y el ensayo de oligocromatografía (OligoC) se han realizado para mejorar la detección de ADN de T. cruzi. Dada la heterogeneidad  de los resultados reportados de las pruebas disponibles para el diagnóstico, el objetivo de este estudio fue comparar la precisión de los métodos  serológicos y moleculares para detectar la infección por T cruzi en pacientes con enfermedad de Chagas crónica.

Materiales y Métodos

Población y muestras del estudio

El estudio es analítico con diseño de casos y controles, que incluyó un total de 205 personas. En el estudio, los individuos fueron seleccionados de  una base de datos de aproximadamente 2,000 pacientes que habían sido reclutados para un estudio de epidemiología molecular de la EC, realizado  por nuestro grupo de investigación durante los últimos 10 años. La base de datos cuenta con datos epidemiológicos, clínicos, de laboratorio y la información de cada participante. La recolección de los datos epidemiológicos se llevó a cabo cara a cara por entrevistadores entrenados con independencia del personal médico que elaboró el cuestionario. El diagnóstico clínico fue establecido por consenso por un panel independiente formado por dos médicos cardiólogos. Con el fin de conocer el valor diagnóstico de cada prueba serológica y molecular para la detección de T. cruzi y porque no existe una prueba estándar de oro para el diagnóstico de la EC, la selección de los individuos se realizó mediante la combinación de características epidemiológicas y clínicas. Por lo tanto, los criterios de inclusión para el grupo de los pacientes con miocardiopatía chagásica (n= 100) fueron personas de zonas rurales en las que el nivel de endemicidad es elevado, con cardiomiopatía claramente compatible con EC por electrocardiograma, ecocardiograma y Holter de 24 h; mientras que las personas sin signos y síntomas cardíacos y provenientes de una zona urbana no endémica conformaron el grupo control (n= 105).

Además, todas las personas vivieron en estas áreas por 10 o más años. La recolección de las muestras fue así: a cada persona se le tomaron tres  muestras de sangre; una de éstas (6 mL) se utilizó para obtener suero y las otras dos (4 mL cada una y con anticoagulante EDTA) para aislar el  ADN genómico a partir de la capa leucocitaria. El tiempo y temperatura de almacenamiento entre la recolección de la sangre y la extracción de ADN que de 48 h a 4° C. Las muestras de suero y de ADN se almacenaron por congelación a -70 y -20° C, respectivamente, hasta la realización del ensayo. Estas muestras se utilizaron para evaluar el rendimiento diagnóstico de los métodos serológicos y moleculares para detectar la infección por T. cruzi. Las pruebas de laboratorio fueron realizadas por dos profesionales expertos en Microbiología, quienes no conocían la información de los individuos. Dos investigadores, que tampoco conocían la información de los individuos, revisaron los resultados de las pruebas de laboratorio. Los miembros del panel revisaron individualmente cada prueba de laboratorio antes de reunirse para acordar un resultado final.

Todas las pruebas de laboratorio fueron asignadas correctamente, con 100% de concordancia entre los miembros del panel.

Métodos serológicos

Los anticuerpos anti-T. cruzi en suero fueron determinados mediante Elisa casero y recombinante, HAI y las pruebas de IC.

El ELISA casero se realizó en placas de microtitulación de 96 pocillos (Dynatech sistema micro ELISA; Alemania) con extracto soluble de epimastigotes de una cepa autóctona de T. cruzi I (MHOM/CO/06/338).

Las placas se recubrieron con 100 μL de 2.0 μg mL-1 de antígeno diluido en tampón de carbonato – bicarbonato, pH 9.6, por pocillo y se incubaron durante la noche a 4°C. Después las placas se lavaron con Tween 20 (0.05 %) en solución salina tamponada con fosfato (137 mM de NaCl, 2.68 mM de KCl, 1.47 mM de Na2HPO4, y 9.03 mM de KH2PO4•2H2O), pH 7.4 (PBS-T20). Las placas se loquearon con 2 % de leche descremada en PBS-T20. Cada muestra fue probada en duplicado con 100 μL de suero diluido 1:800 en PBS-T20. Las placas se incubaron durante 1 h a temperatura ambiente y se lavaron de nuevo. Posteriormente, se añadieron 100 μL de conjugado de anti-inmunoglobulina humana polivalente (α, γ y μ específica) marcada con fosfatasa alcalina: Cat. no.

A3313 (Sigma-Aldrich, Inc.; EE.UU.), diluido 1:6,000 en PBS-T20. Las placas se incubaron durante 1 h a 37°C y nuevamente fueron lavadas.

Después de la incubación y el lavado, se añadieron 100 μL de 1 mg mL-1 de p-nitrofenil fosfato (Sigma-Aldrich, Inc.; EE.UU.) preparado en tampón de dietanolamina al 10 %, pH 9.7. Las placas se  incubaron durante 25 min a temperatura ambiente. Finalmente, se detuvo la reacción con 50 μL de 3 M de NaOH. La densidad óptica (DO) a 410 nm se midió en un lector de microplacas modelo MR550 (Bio-Rad Laboratories, Inc.; EE.UU.). Una muestra se consideró positiva si la DO fue igual o superior a 0.37. Este punto de corte se estimó con base en el análisis de la curva ROC. El punto de corte óptimo se definió como el valor que maximiza el área bajo la curva ROC (Figura 1A).

Todas las muestras se ensayaron también por BioELISA Chagas (Biokit; España), que utilizó como antígeno péptidos sintéticos TcD, TcE, PEP2 y  TCLi1-2 y por Chagatest ELISA recombinante V.3.0 (Winer laboratorio;  Argentina), que utilizó como antígeno las proteínas recombinantes Ag1, Ag2, g13, Ag30, Ag36, y SAPA. Otras pruebas usadas fueron: Chagatest HAI (Winer Lab; Argentina.), que utilizó como antígeno eritrocitos de oveja sensibilizados con lisado de parásitos y la prueba de IC, que incluyó, como antígeno, los antígenos recombinantes H49 y 1F8 (Chagas AB rapid,  Standard Diagnostics; Corea). Todas las determinaciones de los kits comerciales se realizaron siguiendo las instrucciones del fabricante.

Métodos moleculares

El ADN genómico se aisló mediante el método de “salting-out” a partir de la capa de leucocitos tomados de los 4 mL de sangre anticoagulada con  EDTA13. El ADN nuclear y del kinetoplasto de T. cruzi fueron amplificados mediante el método de PCR con el termociclador PTC-200 ® Thermal  Cycler (Bio-Rad Laboratories, Inc.; EE.UU.). El límite de detección del ADN de T. cruzi para los protocolos de PCR optimizados se estimó en 10  parásitos por 100 μg μL-1 de ADN total aislado. Esta concentración se determinó mediante la mezcla de muestras de sangre anticoagulada con  EDTA de una persona sana (no infectada por T. cruzi) con 1 mL de epimastigotes de T. cruzi I. Las mezclas ensayadas fueron: 1,000, 100, 10, 1,  0.1, 0.01 y 0.001 parásitos en 4 mL de sangre total. El ADN genómico se aisló de la capa leucocitaria, como se mencionó anteriormente y  diferentes concentraciones de ADN se probaron en cada ensayo de PCR. Los experimentos se realizaron por triplicado en tres ocasiones  independientes.

La secuencia de ADN nuclear (ADNn) de T. cruzi repetida en “tándem” fue amplificada utilizando los cebadores Tcz1 (5’-CGA GCT  CTT GCC CAC ACG GGT GCT-3 ‘) y Tcz2 (5’-CCT CCA AGC AGC GGA TTC TAG AGG-3‘) que amplificaron un fragmento de 188 pb ~ durante 30  ciclos (94° C por 30 s, 55° C por 30 s, 72° C por 30 s). Cada PCR contenía 0.5 M de cada cebador, 2 mM de MgCl2, 200 mM de dNTPs, 1X tampón de Taq y 1 U de Taq ADN polimerasa (Invitrogen Brasil Ltda., Brasil).

La región variable del ADN del minicírculo del kinetoplasto (kDNA) fue amplificada por los cebadores 121 (5’-AAA TAA TGT ACG GGK GAG ATG CAT GA-3 ‘) y 122 (5’-GGT TCG ATT GGG GTT GGT GTA ATA TA-3‘) que amplificaron un fragmento de 330 pb ~ durante 35 ciclos (94° C por 1 min, 63.5° C por 1 min, 72° C por 1 min). Cada reacción contenía 0.5 M de cada cebador, 4.5 mM de MgCl2, 200 mM de dNTPs, 1X tampón de Taq y 1.25 U de Taq ADN polimerasa (Invitrogen Brasil Ltda., Brasil).

Las  condiciones de amplificación de las PCR se llevaron a cabo con 800 ng de ADN molde en un volumen total de 20 μL. Los productos de la PCR se analizaron por electroforesis en gel de agarosa al 2 % teñido con bromuro de etidio en tampón TAE 1X. Cada amplicón fue reconocido de acuerdo  con su tamaño, comparado con el marcador de peso molecular XIV (Roche Applied Science; EE.UU.). Todas las etapas de extracción de ADN y las  mezclas de reacción usadas para los ensayos de PCR se controlaron y se compararon con controles positivos y negativos; los controles positivos  incluyeron ADN aislado de la cepa de T. cruzi Silvio X-10 y el ADN aislado de la sangre infectada con dos cepas de T. cruzi I (MHOM/CO/07/REM y  MHOM/CO/07/338); mientras que los controles negativos incluyeron ADN aislado de T. rangeli, Leishmania panamensis, Toxoplasma gondii, Crithidia lucillae y ADN aislado de la sangre no infectada con T. cruzi.

Discusión

En la fase crónica de la EC el diagnóstico se basa en la presencia de anticuerpos contra T. cruzi debido a la ausencia o baja parasitemia; por lo tanto, comúnmente se utilizan pruebas serológicas como ELISA, IFI y HAI. Con el fin de resolver los inconvenientes de resultados falsos negativos y  falsos positivos con las pruebas serológicas convencionales, se han desarrollado ensayos serológicos no convencionales con proteínas  recombinantes de T. cruzi, las cuales tienen valores de sensibilidad y especificidad cercanos al 100% 7-9,16. A pesar de estos avances, y dado que  actualmente no hay disponible ninguna prueba de referencia, la OPS recomienda el uso de dos pruebas basadas en diferentes principios para detectar antígenos6. Sin embargo, esta recomendación ha incrementado los resultados discordantes y las dificultades en el diagnóstico. Además, existen numerosas pruebas disponibles en el mercado, pero con una significativa heterogeneidad relacionada con su exactitud, lo cual dificulta la selección de la más adecuada para garantizar el diagnóstico en zonas endémicas.

La evidencia experimental de este estudio muestra que BioELISA  Chagas y Chagatest ELISA recombinante V 3.0 presentaron los valores más altos de sensibilidad y especificidad, así como VPP y VPN.  Además, tienen una buena capacidad discriminatoria y alta calidad de la sensibilidad y la especificidad; además de la capacidad para confirmar y  excluir el diagnóstico de la infección por T. cruzi en pacientes en fase crónica de la EC. Sin embargo, a pesar de que el nivel de correlación es alto los resultados obtenidos mediante el uso de BioELISA Chagas fueron mejores que con Chagatest ELISA  recombinante v. 3.0, como ha sido reportado en estudios previos en Colombia en los que este último mostró 95% de sensibilidad17. Esto podría ser explicado por diferencias en la composición y mezcla de péptidos sintéticos o proteínas recombinantes de T. cruzi . Así, el  BioELISA Chagas incluye los péptidos sintéticos TcD, TcE, PEP2 y TCLi1-2 (www.biokit.com), con el modelo de epítopes antigénicos inmunodominantes de T. cruzi 18; mientras que, Chagatest ELISA recombinante v.3.0 incluye las proteínas recombinantes Ag1, Ag2, Ag13, Ag30, Ag36, y SAPA (www.wiener-lab.com.ar). Las características de sensibilidad y especificidad de cada péptido/proteína y sus mezclas fueron revisados previamente por Jose Franco da Silveira9. Sin embargo, es importante señalar que ambas pruebas muestran altos niveles de correlación entre sí; por otra parte, exhiben antígenos reconocidos principalmente por anticuerpos de la clase de IgM, tales como TCLi1-2 y SAPA. Sin embargo, en la  reacción antígeno – anticuerpo en la prueba BioELISA Chagas se identifican anticuerpos de la clase de IgG e IgM humana, mientras que el  Chagatest ELISA recombinante v.3.0 sólo identifica IgG humana. Por el contrario, el ensayo inmunocromatográfico de Chagas AB rapid es una prueba diagnóstica rápida que utiliza los antígenos recombinantes H49 y 1F8 que han demostrado valores de sensibilidad y especificidad de 97-100% 16,19. Esta evidencia puede explicar los buenos resultados obtenidos en sensibilidad, especificidad, VPP, VPN, calidad de la sensibilidad, calidad de la especificidad y la capacidad discriminatoria. Además, su simplicidad y facilidad de interpretación hacen que sea muy útil en el diagnóstico rápido de infección por T. cruzi en estudios de campo. Sin embargo, para los sujetos con resultados negativos sería necesario el uso de cualquiera de las otras pruebas para realizar el diagnóstico de infección por T. cruzi. Por otro lado, el ELISA casero y la HAI exhiben altos valores de sensibilidad, especificidad, VPP y VPN.

Sin embargo, el ELISA casero tiene mejores valores de sensibilidad y VPN que el Chagatest HAI, mientras Chagatest HAI tiene mejores valores de  especificidad y VPP que el ELISA casero (Tabla 1); además, el ELISA casero presentó mayor capacidad discriminatoria y capacidad para confirmar  y descartar el diagnóstico de la infección por T. cruzi. Estas pruebas mostraron falsos positivos y negativos, lo cual podría ser resuelto o mejorarse con el uso de las preparaciones antigénicas de tripomastigotes y/o amastigotes de cepas autóctonas de T. cruzi.

La detección de T. cruzi en muestras de sangre humana mediante amplificación de ADN con métodos basados en PCR ha sido aplicado para  diagnosticar EC en pacientes, quienes han progresado a la fase crónica.

Pero, dado que durante esta fase el número de parásitos que circula en sangre periférica es bajo o intermitente, los métodos basados en la PCR tienen sensibilidades del orden de 45-65 %, mientras que la especificidad se mantiene cerca del 100 % 5, 20,21. Aunque las secuencias diana utilizadas en este estudio tienen un alto número de copias en el genoma de T. cruzi (5,000 a 10,000 copias de ADNk y ~ 10% de ADNn por parásito) 22,23, los resultados mostraron moderados a bajos valores de sensibilidad y calidad de sensibilidad para ensayos de PCR realizadas con los cebadores 121/122 y Tcz1/Tcz2. Estos resultados se podrían explicar, al menos en parte, por la disponibilidad de ADN molde en la mezcla de reacción, que podría estar relacionada con el tipo de cepa de T. cruzi. Así, se observan diferencias en el número de copias de ADN satélite blanco, entre las cepas de T. cruzi que son más abundantes en T. cruzi II que en T. cruzi I 24, así como hay diferencias en el nivel de parasitemia, que es mayor en infección por T. cruzi I comparada con T. cruzi II 20. Estos resultados son relevantes porque en Colombia T. cruzi I es el grupo predominante, tanto en el ciclo doméstico como selvático, pero hay evidencia de  infección por T. cruzi II en pacientes con cardiopatía chagásica 25. Estos resultados muestran que pacientes con un resultado positivo de PCR pueden ser diagnosticados como infectados por T. cruzi, pero para los pacientes con un resultado PCR negativo será necesario el uso de cualquiera de las otras pruebas para realizar el diagnóstico de infección por T. cruzi. Esto indica que las pruebas moleculares pueden confirmar el diagnóstico,  pero no excluirlo (Figura 1C). De hecho, estas pruebas moleculares mostraron de moderada a baja correlación con las demás pruebas.

En conclusión, nuestra evidencia experimental sugiere que la estrategia de diagnóstico de la infección por T. cruzi en pacientes que han progresado a la fase crónica de EC se puede hacer mediante el uso de BioELISA Chagas o Chagatest ELISA recombinante v.3.0, que no sólo mostraron un  mejor rendimiento diagnóstico, sino que también pueden confirmar y excluir el diagnóstico de la infección por T. cruzi. Por otra parte, Chagas AB Rapid podría ser utilizado en los casos en que sea necesario un diagnóstico rápido. Por último, los ensayos moleculares se pueden usar para  confirmar el diagnóstico; sin embargo, debido a la baja sensibilidad, especificidad y capacidad discriminatoria es importante la utilización de cualquiera de las otras pruebas para realizar el diagnóstico de la infección por T. cruzi.

Continuar leyendo el artículo completo en Revista Bioreview

Autores

Luisa Fernanda Duarte (1), Oscar Flórez (1), Giovanna Rincón (1), Clara Isabel González* (1)

(1) Molecular Immunology and Epidemiology Group, GIEM, Facultad de Salud, Universidad Industrial de Santander, Bucaramanga, Colombia.

Colombia Médica – Vol. 45 Nº2 2014 (Abr-Jun)Colombia Médica

Correspondencia:

  • Clara Isabel González Rugeles, PhD Escuela de Bacteriología, Facultad de Salud. Carrera 32 # 29-31, Oficina 419 Bucaramanga, Colombia
  • Tel: +57 7 6322429 – Fax: +57 7 6322429
  • E-mail: oc.ude.siu@gic

Algoritmo para detección de virus Zika (ZIKV)

0

Sospecha de introducción del virus en un área específica

Este algoritmo está dirigido a aquellos laboratorios de referencia que cuentan con capacidad instalada para la detección (molecular/antigénica y serológica) de dengue 2 (DENV), chikungunya (CHIKV) y Zika 3 (ZIKV). Para la manipulación de muestras sospechosas, se requiere un nivel de contención BSL2.

Figura 1. Algoritmo para detección de ZIKV

algoritmo ZIKA

  1. Según el perfil epidemiológico del país y teniendo en cuenta las características clínicas de la infección, se debe considerar la inclusión de otros Arbovirus como parte del algoritmo diferencial para virus Zika.
  2. Este algoritmo no es exhaustivo, y la infección por dengue debe ser descartada según las guías de manejo clínico y algoritmo de laboratorio específico.
  3. Éstas recomendaciones son provisionales y están sujetas a modificaciones posteriores en función de los avances en el conocimiento sobre la enfermedad y el agente etiológico.

Recolección y envío de muestras

Diagnóstico virológico

Tipo de muestra: suero (colectado en tubo seco)

Dado que la enfermedad por virus Zika suele ser leve, los síntomas iniciales pueden pasar desapercibidos lo cual disminuye la oportunidad para la toma de la muestra. Aunque el periodo de viremia aún no ha sido plenamente establecido, el RNA viral ha sido detectado en suero hasta 10 días después de iniciados los síntomas. Asimismo, el RNA de ZIKV ha sido detectado en orina durante un periodo de tiempo prolongado de la fase aguda, por lo que podría considerarse como una muestra alternativa. Sin embargo y ya que se requieren mayores estudios al respecto, se recomienda tomar una muestra de suero dentro de los primeros 5 días de iniciados los síntomas.

Diagnóstico Serológico

Tipo de muestra: suero (colectado en tubo seco)

La detección de anticuerpos IgM específicos para ZIKAV es posible por ensayos de ELISA o inmunofluorescencia a partir del día 5 de iniciados los síntomas. Ya que un suero único en fase aguda es presuntivo, se recomienda la toma de una segunda muestra entre una y dos semanas después de la primera muestra para demostrar seroconversión (negativo a positivo) ó incremento hasta cuatro veces el título de anticuerpos (con un ensayo cuantitativo).

La interpretación de los ensayos serológicos tiene una relevancia especial para el diagnóstico de ZIKAV. En infecciones primarias (primera infección con un flavivirus) se ha demostrado que las reacciones cruzadas con otros virus genéticamente relacionados son mínimas. Sin embargo, se ha demostrado que sueros de individuos con historia previa de infección por otros flavivirus (especialmente dengue, fiebre amarilla y West Nile) pueden cruzar en estos ensayos. Si bien la técnica de neutralización por reducción de placas (PRNT), ofrece una mayor especificidad para detección de anticuerpos neutralizantes (IgG), la reacción cruzada también ha sido documentada; de hecho,han encontrado pacientes con historia previa de infección por otros flavivirus que ante infección por ZIKAV elevan hasta cuatro veces los títulos de anticuerpos neutralizantes.

Conservación de la muestra

  • Refrigerada (2–8 °C) si será procesada (o enviada al laboratorio de referencia) antes de 48 horas.
  • Congelada (-10 a -20 °C) si será procesada después de 48 horas o durante un periodo no mayor de 7 días.
  • Congelada (-70 °C) si será procesada después de una semana. La muestra se conserva adecuadamente durante periodos prolongados de tiempo.

Envío de la muestra por vía aérea al laboratorio de referencia

  • Enviar (en lo posible) con hielo seco; como mínimo, garantizar la cadena de frío con geles refrigerantes. Utilizar siempre triple empaque.
  • Enviar durante las primeras 48 horas.
  • Las muestras originales deben ser empacadas, marcadas etiquetadas (si se utiliza hielo seco) y documentadas como categoría B.
  • Enviar siempre la ficha clínica y epidemiológica completamente diligenciada.

Comentarios y recomendaciones adicionales

  • Existen diferentes protocolos (iniciadores y sondas) para la detección de ZIKAV por RT-PCR (tanto convencional como tiempo real). Teniendo en cuenta la sensibilidad, se recomiendan los protocolos utilizados por el centro para el Control y Prevención de Enfermedades de los Estados Unidos (CDC). Estos protocolos deben ser estandarizados para su uso diagnóstico a nivel local. Recomendaciones adicionales serán entregadas una vez se caractericen los primeros casos.
  • La determinación de IgM puede hacerse por diferentes técnicas (ELISA o IF). Sin embargo, hasta el momento no se cuenta con estuches comerciales (avalados o validados) para determinación serológica de ZIKAV. En cualquier caso, la mejor sensibilidad está dada en aquellas plataformas in house que utilizan como antígeno el virus completo en comparación con aquellas que utilizan proteínas (o péptidos) recombinantes.
  • El aislamiento viral no se considera como una técnica diagnóstico, y se recomienda únicamente para ensayos de investigación complementarios a la vigilancia en salud púbica.
  • Los laboratorios que no cuentan con la capacidad para confirmación virológica (RT-PCR, aislamiento viral, secuenciación) o serológica (PRNT), deberán enviar las muestras a un laboratorio de referencia o centro colaborador de la Organización Mundial de la Salud (OMS). Antes de realizar cualquier envío, por favor comunicarse con las personas de contacto en cada centro y con la oficina de la Organización Panamericana de la Salud (OPS) en Washington, DC.

Referencias Bibliográficas

  1. Gourinat AC, O’Connor O, Calvez E, Goarant C, Dupont- Rouzeyrol M: Detection of Zika Virus in Urine. Emerging Infectious Diseases 2015, 21:84-6. http://wwwnc.cdc.gov/eid/article/21/1/14-0894_article
  2. Hayes EB: Zika virus outside Africa. Emerging Infectious Diseases 2009, 15:1347-50.
  3. European Center for Disease Prevention and Control . Rapid Risk Assessment. Zika virus infection outbreak, French Polynesia. 2014.
  4. Lanciotti RS, Kosoy OL, Laven JJ, Velez JO, Lambert AJ, Johnson AJ, et. al.: Genetic and Serologic Properties of Zika Virus Associated with an http://ecdc.europa.eu/en/publications/Publications/ Zika-virus-French-Polynesia-rapid-risk-assessment.pdf Epidemic, Yap State, Micronesia, 2007. Emerging Infectious Diseases 2008, 14:1232-6. http://wwwnc.cdc.gov/eid/article/14/8/08-0287_article
  5. OMS. Guía sobre la reglamentación relativa al Transporte de sustancias infecciosas, 2013–2014 http://apps.who.int/iris/bitstream/ 10665/85394/1/WHO_HSE_GCR_2012.12_spa.pdf

Fuente: Bioreview

Demuestran por qué el cuerpo no desarrolla inmunidad contra la malaria

0

Científicos australianos han descubierto cómo los parásitos de la malaria causan una reacción inflamatoria que sabotea la capacidad del cuerpo humano para protegerse contra la enfermedad. El descubrimiento abre la posibilidad de diseñar nuevas vacunas contra la malaria o mejorar las ya existentes al aumentar las células inmunes clave necesarias para la inmunidad de larga duración, incluso en el caso de vacunas que han sido previamente ineficaces en ensayos clínicos.

El sistema inmunológico no desarrolla inmunidad contra la malaria

Investigadores del Instituto Walter y Eliza Hall de Melbourne, en Australia, detectaron que las mismas moléculas inflamatorias que impulsan la respuesta inmune en la malaria clínica y grave también evitan que el cuerpo desarrolle anticuerpos protectores contra el parásito. Los doctores Diana Hansen, Axel Kallies y Victoria RygCornejo lideraron un equipo de investigación que examinó cómo el sistema inmune responde a la infección de la malaria causada por Plasmodium falciparum.

Hansen dijo que es la primera vez que los científicos han identificado por qué el sistema inmunológico no desarrolla la inmunidad durante la infección por malaria. “Con muchas infecciones, una sola exposición al patógeno es suficiente para inducir la producción de anticuerpos que protegerán durante el resto de la vida. Pero con la malaria se puede tardar hasta 20 años hasta que alguien acumula suficiente inmunidad protectora. Durante ese tiempo, las personas expuestas a la malaria son susceptibles a la reinfección y enferman muchas veces, además de difundir la enfermedad”, señaló Hansen.

“La malaria ha sido tradicionalmente difícil de manejar debido a que el cuerpo no es bueno en el desarrollo de una inmunidad de larga duración para el parásito, lo que ha obstaculizado el desarrollo de vacunas. Esto se complica por el hecho de que no sabíamos si era el parásito de la malaria en sí o la reacción inflamatoria a la malaria la que en realidad inhibe la capacidad de desarrollar una inmunidad protectora”, apuntó Hansen.

“Hemos demostrado que se trataba de un arma de doble filo: la fuerte reacción inflamatoria que acompaña y, de hecho, lleva a la malaria clínica severa es también responsable de silenciar las células inmunes clave necesarias para la protección a largo plazo contra el parásito”, describió Hansen. En este sentido, Kallies dijo que estas moléculas inflamatorias liberadas por el organismo para combatir la infección impiden la fabricación de anticuerpos protectores. “La inmunidad a largo plazo contra la malaria y otros patógenos requiere respuestas de los anticuerpos”, afirmó.

250 millones de infectados por malaria al año

“Las células inmunes especializadas llamadas células T auxiliares unen sus fuerzas con las células B para generar estos anticuerpos protectores. Sin embargo, hemos demostrado que durante la infección por malaria moléculas inflamatorias críticas en realidad detienen el desarrollo de las células T auxiliares y, por lo tanto, las células B no reciben las instrucciones necesarias para producir anticuerpos”, detalló Kallies.

La malaria es una de las más graves enfermedades infecciosas humanas, con cerca de 250 millones de casos clínicos cada año. Los niños son particularmente susceptibles a la malaria severa debido a que tienen poca o ninguna inmunidad contra el parásito. La malaria grave causa síntomas como anemia, problemas respiratorios, insuficiencia renal y coma, y puede llevar rápidamente a la muerte.

Hansen resaltó que estos hallazgos podrían llevar a nuevos caminos en la búsqueda de vacunas eficaces contra la malaria. “Esta investigación abre la puerta a enfoques terapéuticos para acelerar el desarrollo de la inmunidad protectora contra la malaria y mejorar la eficacia de las vacunas contra la malaria”, dijo.

“Hasta ahora, las vacunas contra la malaria han tenido resultados decepcionantes. Ahora podemos ver una forma de mejorar estas respuestas, mediante la adaptación o aumentar la vacuna para impulsar el desarrollo de las células T auxiliares que permitan que el cuerpo produzca anticuerpos protectores que se dirijan a los parásitos de la malaria”, concluyó.

Puede consultar el artículo completo, en inglés, haciendo clic aquí.

Fuente: REC

Investigan un tratamiento contra los parásitos intestinales

0

Los nematodos intestinales y los gusanos infectan a más de mil millones de personas en todo el mundo, provocando problemas de desnutrición y desarrollo, especialmente en los niños. La resistencia al tratamiento con medicamentos existente es cada vez mayor, pero ahora, un equipo de investigadores ha insertado con éxito el gen de una proteína insecticida de origen natural llamada Bt en una bacteria inofensiva.

Esta proteína podría incorporarse en los productos lácteos o emplearse como un probiótico para suministrarla a los intestinos de las personas afectados por Ascarididae, adelantan los autores de la investigación.

La proteína cristalina Bt se utiliza en aerosoles insecticidas orgánicos y se ha producido en las plantas genéticamente modificadas como un pesticida seguro para matar a los insectos que se alimentan de esas plantas. Bt también puede matar algunos nematodos, por lo que en este trabajo, los investigadores utilizaron el gen de un tipo de proteína insecticida que se produce naturalmente por la bacteria del suelo Bacillus thuringiensis.

Los científicos unieron el gen a un plásmido, un pedazo corto circular de ADN que puede replicarse independientemente del genoma en la mayoría de las bacterias. Luego, insertan el plásmido en Lactococcus lactis, una bacteria que fermenta la leche para producir yogurt, queso y suero de leche, y que ha sido también el primer organismo modificado genéticamente para utilizarse para tratar la enfermedad humana.

Una propiedad importante de esta bacteria tiene que ver con un descubrimiento extraño realizado hace casi 15 años. Normalmente, las moléculas de tamaño sustancial sólo pueden escapar de una célula si la maquinaria celular en la membrana celular las exporta de forma activa o si el microbio se rompe abriéndose en un proceso llamado lisis.

“Hemos observado que las proteínas grandes podrían liberarse de esta bacteria en particular sin la lisis celular o un sistema de exportación activo”, señala Todd Klaenhammer, profesor universitario en el Departamento de Alimentación, Bioprocesamiento y Ciencias de la Nutrición de la Universidad Estatal de North Carolina, en Raleigh, Estados Unidos.

Este experto señala que el mecanismo de este “fenómeno permeable de Lactococcus” no se conoce totalmente y que es importante destacar que el comportamiento de fugas no interfirió con el crecimiento celular bacteriano normal o su viabilidad. En el siguiente paso, los científicos encontraron que este microbio modificado genéticamente podía inhibir en el laboratorio el gusano Caenorhabditis elegans, a través de la proteína Bt clonada y expresada.

Este método de tratamiento de las infecciones por lombrices mediante vía oral con bacterias del tipo alimentario podría ser muy barato, según Klaenhammer, quien lo destaca como ventajoso, ya que los Ascarididae infectan a millones de personas en los países en desarrollo.

“Nuestros laboratorios están investigando las posibilidades del uso de bacterias probióticas y bacterias seguras en alimentos para administrar por vía oral vacunas y otros productos bioterapéuticos directamente en el tracto gastrointestinal”, adelanta la autora principal Evelyn Durmaz, investigadora asociada en la Universidad Estatal de North Carolina.

Puede consultar el artículo completo, en inglés, haciendo clic aquí.

Fuente: REC

Colón no llevó la sífilis a Europa

0

Es una creencia común que después del descubrimiento de América, Colón y su tripulación llevaron el azote de la sífilis a Europa.

Pero ahora hay evidencias concluyentes de que esa teoría simplemente no es cierta, y la sífilis ya estaba presente en el Viejo Continente mucho antes de que Colón partiera en 1492.

Los investigadores de la Universidad de Medicina de Wien, en Austria, afirman que han descubierto evidencias de la presencia de sífilis congénita en esqueletos enterrados en 1320 en la plaza de la catedral de Saint Polten, en Austria.

Los investigadores, del Centro de Anatomía y Biología Celular de la Universidad, cortaron en rodajas muy finas los huesos y los dientes de los esqueletos para examinarlos con el microscopio.

Los dientes, en especial, proporcionaron una buena evidencia a favor de la infección de sífilis, según un equipo dirigido por Karl Grossschmidt y Fabian Kanz, del departamento de biología celular y del desarrollo de la universidad.

“Encontramos dientes de Hutchinson con muescas en la parte central y bordes convergentes y molares de morera, que son señales características de la sífilis”, explicaron los autores del estudio. “El descubrimiento refuta con claridad la teoría previa”, escribieron Grossschmidt y Kanz. Dicen que para confirmar los hallazgos, la investigación futura puede usar pruebas biológicas moleculares y otros métodos.

Los esqueletos del siglo XIV examinados en la investigación tienen muchos vecinos. Los investigadores reportaron que las excavaciones ya han recuperado más de 9.000 esqueletos de la plaza de la catedral de Saint Polten, la cantidad más alta de desenterrados en cualquier lugar arqueológico de Europa.

Puede consultar el artículo completo, en inglés, haciendo clic aquí.

Fuente: REC

Agenda

       

Radio El Microscopio

Últimas notas publicadas